Тинюкова Татьяна Сергеевна

ИССЛЕДОВАНИЕ РАЗНОСТНОГО УРАВНЕНИЯ ШРЕДИНГЕРА ДЛЯ НЕКОТОРЫХ ФИЗИЧЕСКИХ МОДЕЛЕЙ

01.01.02 — дифференциальные уравнения, динамические системы и оптимальное управление

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена на кафедре математического анализа ГОУВПО «Удмуртский государственный университет».

Научный руководитель — доктор физико-математических

наук, профессор Ю. П. Чубурин

Официальные оппоненты — доктор физико-математических

наук, профессор Ю. П. Вирченко кандидат физико-математических

наук, доцент В. А. Зайцев

Ведущая организация — Башкирский государственный

университет

Защита состоится 16 октября 2013 г. в 16.00 ч. на заседании диссертационного совета (Д 212.015.08) по присуждению ученой степени кандидата физико-математических наук в НИУ «БелГУ», по адресу: 308007, г. Белгород, ул. Студенческая, д. 14, корпус 1, ауд. 407.

 ${\rm C}$ диссертацией можно ознакомится в библиотеке HИУ «БелГУ».

Автореферат разослан сентября 2013 г.

Учёный секретарь диссертационного совета, кандидат физ.-мат. наук

Прице С. А. Гриценко

Общая характеристика работы

Актуальность темы. Важность математического исследования уравнения Шредингера в разностном подходе (или в приближении сильной связи) объясняется, во-первых, значительно возросшей в последние 20-30 лет популярностью такого подхода в физической литературе, относящейся к наноразмерным устройствам - основе будущей микроэлектроники (см., например, работы [1-4]). (Заметим, что классическая теория рассеяния для уравнения Шредингера, основанная на интегральном (матричном) уравнении Липпмана-Швингера, в настоящее время особенно актуальна для данных физических приложений, поскольку вероятность прохождения оказывается пропорциональной электронной проводимости в квантовой проволоке (см., например, [5]). Во-вторых, это связано с тем, что, несмотря на физическую актуальность, математических работ, исследующих данные модели, сравнительно немного и относятся они, как правило, к решеткам \mathbb{Z}^d , $d \ge 1$ (см., например, работы [6-11]). Между тем, математические модели в этой области даже в одномерном случае (на графе) имеют достаточно интересные и необычные свойства.

Объект и предмет исследования. Объектом исследования является разностное уравнение Шредингера с потенциалами, описывающими электрон в квантовых проволоках, в квантовом волноводе и в периодической слоистой структуре. Предмет исследования — спектральные свойства и задача рассеяния для данного оператора Шредингера.

Методы исследования. В работе используются методы разностных уравнений функционального анализа и спектральной теории операторов, а также теории функций нескольких комплексных переменных.

<u>Научная новизна.</u> В диссертации получены следующие новые научные результаты:

1) доказаны теоремы существования и единственности квази-

уровней (т. е. собственных значений и резонансов) разностного оператора Шредингера, отвечающего пересечению квантовых проволок, исследовано асимптотическое поведение квазиуровней;

- 2) найдены вероятности распространения квантовой частицы в возможных направлениях для данного оператора, получены условия полного отражения (прохождения);
- доказаны теоремы существования и единственности квазиуровней двумерного разностного оператора Шредингера, отвечающего квантовому волноводу, исследована асимптотика квазиуровней;
- 4) найдены вероятности отражения (прохождения) для данного оператора в случае малого потенциала и медленных квантовых частиц;
- 5) найдены вероятности прохождения и отражения для разностного оператора Шредингера в периодической слоистой структуре в случае малого потенциала и малой перпендикулярной составляющей угла падения частицы на потенциальный барьер.

<u>Практическая и теоретическая ценность.</u> Работа носит теоретический характер. Полученные результаты могут найти применение в квантовой теории твердого тела.

<u>Апробация диссертации.</u> Материалы диссертации докладывались и обсуждались:

- на Ижевском городском математическом семинаре по дифференциальным уравнениям и теории оптимального управления под руководством профессора Е. Л. Тонкова (2009 г.);
- на Воронежской весенней математической школе "Понтрягинские чтения XX" (2009 г.), "Понтрягинские чтения XXI" (2010 г.); <u>Публикации.</u> Основные результаты диссертации отражены в 9 публикациях, список которых приведен в конце автореферата.

Структура и объем работы. Диссертация объемом 119 страниц состоит из введения, трех глав, разбитых на параграфы, и библиографического

списка, состоящего из 44 наименований.

Основное содержание работы

Во введении приведен краткий обзор основных результатов в исследовании разностного уравнения Шредингера с потенциалами, описывающими электрон в квантовых проволоках, в квантовом волноводе и в периодической слоистой структуре. Отмечены работы близкие по содержанию к теме диссертации. Обосновывается актуальность темы исследования, пояснена ее научная ценность. Дан краткий обзор содержания работы по главам.

Обозначим через $\mathcal G$ объединение двух «целочисленных» координатных прямых, то есть

$$\mathcal{G} = (\mathbb{Z} \times \{0\}) \cup (\{0\} \times \mathbb{Z}),$$

а через $l^2(X)$, где $X \subset \mathbb{Z}^2$ — гильбертово пространство квадратично суммируемых функций на X со скалярным произведением

$$(\varphi, \psi)_{l^2(X)} = \sum_{(n,m) \in X} \varphi(n,m) \overline{\psi(n,m)}.$$

<u>В первой главе</u> диссертации рассматривается разностный (дискретный) оператор Шредингера \mathcal{H}_0 , действующий в $l^2(\mathcal{G})$ следующим образом:

$$(\mathcal{H}_0\psi)(0,0) = \psi(1,0) + \psi(-1,0) + \psi(0,1) + \psi(0,-1),$$

$$(\mathcal{H}_0\psi)(n,0) = \psi(n+1,0) + \psi(n-1,0), \quad n \neq 0,$$

$$(\mathcal{H}_0\psi)(0,m) = \psi(0,m+1) + \psi(0,m-1), \quad m \neq 0.$$
(1)

Оператор \mathcal{H}_0 является гамильтонианом (оператором энергии) электрона вблизи пересечения двух одномерных квантовых проволок. Уравнение Шредингера рассмотрено для двух различных классов убывающих

на бесконечности потенциалов, при этом изучаются спектр и вероятности прохождения квантовой частицы в возможных направлениях движения.

Перечислим основные результаты первой главы.

Найден вид $\mathcal{R}_0(\lambda)$ (резольвенты оператора \mathcal{H}_0), исследованы существенный и дискретный спектры оператора \mathcal{H}_0 .

Теорема 1. Существенный спектр оператора \mathcal{H}_0 совпадает с отрезком [-2,2].

Введем в рассмотрение оператор $H_{01}: l^2(\mathbb{Z}) \to l^2(\mathbb{Z}),$ действующий по правилу

$$(H_{01}\varphi)(n) = \varphi(n-1) + \varphi(n+1), \quad n \in \mathbb{Z}.$$

Ядро резольвенты $R_{01}(\lambda) = (H_{01} - \lambda)^{-1}$ оператора H_{01} , вообще говоря, продолженное по параметру λ на соответствующую риманову поверхность M, будем называть функцией Грина оператора H_{01} и обозначать

$$G_{01}(\lambda, n-m) = -\frac{1}{\sqrt{\lambda^2 - 4}} \left(\frac{\lambda - \sqrt{\lambda^2 - 4}}{2} \right)^{|n-m|}.$$

Поверхность M получена склейкой двух экземпляров комплексной плоскости вдоль интервала (-2,2).

Рассмотрим оператор Шредингера $\mathcal{H}_{\varepsilon} = \mathcal{H}_0 + \varepsilon \mathcal{V}$ с малым параметром $\varepsilon > 0$; здесь \mathcal{V} — оператор умножения на вещественную функцию $\mathcal{V}(n,m) \neq 0$ (потенциал), удовлетворяющую условиям

$$|\mathcal{V}(n,0)| \le \beta e^{-\alpha|n|}, \quad |\mathcal{V}(0,m)| \le \beta e^{-\alpha|m|}, \quad n,m \in \mathbb{Z}, \quad \alpha,\beta > 0,$$
 (2)

 $\mathcal V$ описывает влияние примесей. Оператор $\mathcal H_{\varepsilon}$ является гамильтонианом электрона вблизи пересечения двух квантовых проволок.

Уравнение Шредингера для оператора $\mathcal{H}_{\varepsilon}$ имеет вид

$$(\mathcal{H}_0 + \varepsilon \mathcal{V})\psi = \lambda \psi. \tag{3}$$

Спектр и существенный спектр оператора A обозначим $\sigma(A)$ и $\sigma_{ess}(A)$ соответственно.

Уравнение (3), рассматриваемое в классе $l^2(\mathcal{G})$, для $\lambda \not\in \sigma(\mathcal{H}_0)$ можно записать в виде

$$\psi = -\mathcal{R}_0(\lambda)\mathcal{V}\psi. \tag{4}$$

Перейдем к новой неизвестной функции $\varphi = \sqrt{|\mathcal{V}|}\psi$ и положим $\sqrt{\mathcal{V}} = \sqrt{|\mathcal{V}|} \mathrm{sgn} \mathcal{V}$ (только для \mathcal{V}). Тогда уравнение (4) можно переписать в виде

$$\varphi = -\sqrt{|\mathcal{V}|}\mathcal{R}_0(\lambda)\sqrt{\mathcal{V}}\varphi \tag{5}$$

и, продолжая оператор $-\sqrt{|\mathcal{V}|}\mathcal{R}_0(\lambda)\sqrt{\mathcal{V}}$ на двулистную риманову поверхность M функции Грина оператора \mathcal{H}_0 (ядра резольвенты $\mathcal{R}_0(\lambda)$) (см. ниже), рассматривать его как оператор в $l^2(\mathcal{G})$ для $\lambda \in M$.

Определение 1. (см. [12]) Число λ , принадлежащее второму (так называемому «нефизическому») листу римановой поверхности M, будем называть *резонансом* оператора $\mathcal{H}_{\varepsilon}$, если существует ненулевое решение $\varphi \in l^2(\mathcal{G})$ уравнения (5).

Определение 2. *Квазиуровнем* оператора $\mathcal{H}_{\varepsilon}$ будем называть его собственное значение или резонанс. В случае, когда λ принадлежит второму листу римановой поверхности M, ненулевые решения ψ уравнения (4) (соответствующие решению уравнения (5) $\varphi \in l^2(\mathcal{G})$), вообще говоря, экспоненциально возрастают.

Найден критерий существования квазиуровня оператора $\mathcal{H}_{\varepsilon}$. Исследовано наличие квазиуровней в окрестности нуля для оператора $\mathcal{H}_{\varepsilon}$.

Для произвольной функции $\varphi(n,m)$, определенной на \mathcal{G} , будем пользоваться обозначениями

$$f(\varphi) = f(\lambda, \varphi) = (R_{01}(\lambda)\varphi)(1) + (R_{01}(\lambda)\varphi)(-1),$$

$$\varphi_1(n) = \varphi(n, 0), \quad \varphi_2(m) = \varphi(0, m), \quad n, m \in \mathbb{Z}.$$

Теорема 2. Оператор $\mathcal{H}_{\varepsilon}$ для всех достаточно малых ε не имеет ненулевых квазиуровней в окрестности нуля. Доказаны существование и единственность решения модифицированного уравнения Липпмана-Швингера

$$\begin{cases}
\varphi_{1}(n,\lambda) = \sqrt{|\mathcal{V}_{1}|}e^{ikn} - \varepsilon\sqrt{|\mathcal{V}_{1}|}R_{01}(\lambda)\sqrt{\mathcal{V}_{1}}\varphi_{1}(n,\lambda) + \sqrt{|\mathcal{V}_{1}|} \times \\
\times \frac{2\cos k \cdot f(\delta) + \varepsilon f(\sqrt{\mathcal{V}_{2}}\varphi_{2}) - \varepsilon f(\sqrt{\mathcal{V}_{1}}\varphi_{1})f(\delta)}{1 - f^{2}(\delta)}R_{01}(\lambda)\delta(n), n \in \mathbb{Z}, \\
\varphi_{2}(m,\lambda) = -\varepsilon\sqrt{|\mathcal{V}_{2}|}R_{01}(\lambda)\sqrt{\mathcal{V}_{2}}\varphi_{2}(m,\lambda) + \sqrt{|\mathcal{V}_{2}|} \times \\
\times \frac{-2\cos k + \varepsilon f(\sqrt{\mathcal{V}_{1}}\varphi_{1}) - \varepsilon f(\sqrt{\mathcal{V}_{2}}\varphi_{2})f(\delta)}{1 - f^{2}(\delta)}R_{01}(\lambda)\delta(m), \quad m \in \mathbb{Z}.
\end{cases}$$
(6)

при определенной взаимосвязи между λ и ε ; получена асимпотическая формула этого решения.

В следующей теореме рассматривается случай малого потенциала и «медленной» квантовой частицы.

Теорема 3. Предположим, что $k = A\varepsilon$, в случае знака «+» или $\tilde{k} = A\varepsilon$ в случае знака «-», где $\tilde{k} = -\pi - k$, $A \neq 0$ — вещественная константа. Тогда для достаточно малых ε существует единственное решение $\varphi \in l^2(\mathcal{G})$ модифицированного уравнения Липпмана — Швингера (6), имеющее вид

$$\varphi_1(n,\varepsilon) = \sqrt{|\mathcal{V}_1(n)|} (\pm 1)^{n+1} (1 + n - |n|) Ai\varepsilon + O(\varepsilon^2),$$

$$\varphi_2(m,\varepsilon) = \sqrt{|\mathcal{V}_2(m)|} (\pm 1)^{m+1} Ai\varepsilon + O(\varepsilon^2).$$

Описана картина рассеяния для оператора $\mathcal{H}_{\varepsilon}$, выписаны коэффициенты отражения и прохождения. Получены асимптотические формулы для этих коэффициентов в частном случае.

Обозначим через $P_2^{\pm}(\lambda)$ вероятности прохождения вдоль оси m вверх и вниз соответственно, через $P_1^{\pm}(\lambda)$ — вероятности прохождения вдоль оси n вправо и влево соответственно.

Положим

$$C^{-} = 2A^{2} - \frac{1}{2}Ai\sum_{j\in\mathbb{Z}}(-1)^{j+1}(1+j-|j|)\mathcal{V}_{2}(j) +$$

$$+ \frac{1}{4}Ai\sum_{j\in\mathbb{Z}}(2j-2+|1-j|+|1+j|)(1+j-|j|)\mathcal{V}_{1}(j),$$

$$K^{-} = 2A^{2} - \frac{1}{2}Ai\sum_{j\in\mathbb{Z}}(1+j-|j|)\mathcal{V}_{2}(j) +$$

$$+ \frac{1}{4}Ai\sum_{j\in\mathbb{Z}}(-1)^{j}(2j-2+|1-j|+|1+j|)(1+j-|j|)\mathcal{V}_{1}(j).$$

Теорема 4. В условиях теоремы 3 для λ достаточно близких κ точке 2 справедливы равенства

$$P_1^+(\lambda) = P_2^+(\lambda) = P_2^-(\lambda) = A^2 \varepsilon^2 + O(\varepsilon^3),$$

 $P_1^-(\lambda) = 1 + (A^2 - 2C^-)\varepsilon^2 + O(\varepsilon^3);$

u для λ достаточно близких κ точке -2 равенства

$$P_1^+(\lambda) = P_2^+(\lambda) = P_2^-(\lambda) = A^2 \varepsilon^2 + O(\varepsilon^3),$$

 $P_1^-(\lambda) = 1 + (A^2 - 2K^-)\varepsilon^2 + O(\varepsilon^3).$

В следующей теореме, в отличие от теоремы 4, потенциал мал, а k любое.

Теорема 5. Пусть $\lambda=2\cos k,\ k\in(-\pi,0)$ фиксировано. Тогда

$$P_1^+(\lambda) = (1+E)^2 + B^2 + O(\varepsilon), \quad P_1^-(\lambda) = E^2 + B^2 + O(\varepsilon),$$

$$P_2^{\pm}(\lambda) = D^2 + B^2 + O(\varepsilon),$$

где

$$E = -\frac{2 + 2\cos 2k + \sin^2 2k}{(1 + \cos 2k)^2 + 4\sin^2 2k}, \quad B = \frac{\sin 2k(1 + \cos 2k)}{(1 + \cos 2k)^2 + 4\sin^2 2k},$$
$$D = \frac{2\sin^2 2k}{(1 + \cos 2k)^2 + 4\sin^2 2k}.$$

Получены следующие результаты о квазиуровнях оператора $\mathcal{H}=\mathcal{H}_0+\mathcal{V}.$ Здесь $\mathcal{V}-$ это оператор умножения на функцию

$$\mathcal{V}(n,m) = \begin{cases} V_0(\delta_{n,N} + \delta_{n,-N}), & m = 0, \\ 0, & n = 0 \end{cases}$$

при некотором натуральном N>1. Потенциал $\mathcal V$ имеет «резонансный» характер.

Теорема 6. 1) B сколь угодно малой окрестности каждой из точек ± 2 для значений V_0 достаточно близких к $\pm 1/N$ существует единственный квазиуровень $\lambda_{\pm} = 2\cos k_{\pm}$ оператора \mathcal{H} , причем

$$k_{+} = i\left(V_{0} - \frac{1}{N}\right) + o\left(V_{0} - \frac{1}{N}\right),$$

$$k_{-} = -\pi - i\left(V_{0} + \frac{1}{N}\right) + o\left(V_{0} + \frac{1}{N}\right).$$

2) В сколь угодно малой окрестности каждой из точек ± 2 для значений V_0 достаточно близких к $\pm \frac{1}{N-1}$ существует единственный квазиуровень $\lambda_{\pm} = 2\cos k_{\pm}$ оператора \mathcal{H} , причем

$$k_{+} = \frac{(N-1)^{2}i}{(N-1)^{2}+1} \left(V_{0} - \frac{1}{N-1}\right) + o\left(V_{0} - \frac{1}{N-1}\right),$$

$$k_{-} = -\pi - \frac{(N-1)^{2}i}{(N-1)^{2}+1} \left(V_{0} + \frac{1}{N-1}\right) + o\left(V_{0} + \frac{1}{N-1}\right).$$

Кроме того, доказаны существование и единственность и найден вид решения уравнения Липпмана–Швингера для оператора \mathcal{H} с «налетающей волной», распространяющейся вдоль $\mathbb{Z} \times \{0\}$, а также получен следующий результат.

Теорема 7. В сколь угодно малой окрестности точки $\lambda_0 = 0$ для всех достаточно малых V_0 существует единственное решение λ уравнения $P_1^-(\lambda) = 0$, причем

$$\lambda = O(V_0^3).$$

Во второй главе исследуется двумерное разностное уравнение Шредингера в полосе, что отвечает электрону в квантовом волноводе, также являющееся (более реалистичной) моделью квантовой проволоки (ср. одномерные операторы первой главы). В этой главе изучаются резонансы и собственные значения, возникающие, в случае малых потенциалов, вблизи особенностей невозмущенной функции Грина. Также рассматривается задача рассеяния для данного оператора. Получены простые формулы для прохождения (отражения) вблизи упомянутых выше особенностей.

Положим
$$\Gamma = \mathbb{Z} \times \{1, \dots, N\} \subset \mathbb{Z}^2$$
.

Введем в рассмотрение оператор $H_0=(H_{01}\otimes 1)+(1\otimes H_{02}),$ действующий в $l^2(\Gamma)$. Оператор H_{01} , действующий в $l^2(\mathbb{Z}),$ определен выше. Оператор H_{02} действует в $l^2(\{1,\ldots,N\})\cong \mathbb{C}^N$ и определяется равенствами

$$(H_{02}\varphi)(m) = \varphi(m-1) + \varphi(m+1), \quad m = 2, \dots, N-1,$$

$$(H_{02}\varphi)(1) = \varphi(2),$$

$$(H_{02}\varphi)(N) = \varphi(N-1).$$

Последние два равенства означают наличие нулевых граничных условий для m=0,N.

Положим $H_{\varepsilon}=H_0+\varepsilon V$, где $\varepsilon>0$, а V является оператором умножения на вещественную функцию $V(n,m)\neq 0$, заданную на Γ и удовлетворяющую условию

$$|V(n,m)| \le \beta e^{-\alpha|n|}, \quad n \in \mathbb{Z}, \quad m \in \{1,\dots,N\},$$
 (7)

причем $\alpha > 0$.

Найден вид функции Грина $G_0(n,m,n',m',\lambda)$ оператора H_0 .

Положим

$$\mu_j = \lambda - 2\cos\frac{\pi jm}{N+1}, \quad j = 1,\dots, N,$$

$$a = \sqrt{\frac{2}{N+1}}.$$

Лемма 1. Имеет место формула

$$G_0(n, m, n', m', \lambda) = \sum_{j=1}^{N} a^2 \sin\left(\frac{\pi j m}{N+1}\right) \sin\left(\frac{\pi j m'}{N+1}\right) G_{01}(n-n', \mu_j),$$

 $e \partial e$

$$\lambda \not\in \bigcup_{j=1}^{N} \left[-2 + 2\cos\frac{\pi j}{N+1}, 2 + 2\cos\frac{\pi j}{N+1} \right] = \left[-2 + 2\cos\frac{\pi N}{N+1}, 2 + 2\cos\frac{\pi}{N+1} \right].$$

Данное объединение совпадает с $\sigma(H_0)$.

Изучены спектральные свойства оператора $H_{\varepsilon}.$

Теорема 8. Справедливо равенство

$$\sigma_{ess}(H_{\varepsilon}) = \sigma(H_0).$$

Теорема 9. Предположим, что для некоторого $j \in \{1, ..., N\}$

$$v_j^{\pm} = \sum_{(n',m')\in\Gamma^2} (\pm 1)^{n'} \sin^2\left(\frac{\pi j m'}{N+1}\right) V(n',m') \neq 0.$$

Тогда в некоторой окрестности точек $\lambda_{j0}^{\pm}=\pm 2+2\cos\frac{\pi j}{N+1}$ для всех достаточно малых $\varepsilon>0$ существует единственный квазиуровень $\lambda_{j}^{\pm}=\lambda_{j}^{\pm}(\varepsilon)$ оператора H_{ε} , аналитически зависящий от ε , для которого справедлива формула

$$\lambda_j^{\pm}(\varepsilon) = \pm 2 + 2\cos\frac{\pi j}{N+1} \pm \left(\frac{\varepsilon v_j^{\pm}}{N+1}\right)^2 + O(\varepsilon^4).$$

Положим

$$\sin k_j = -\sqrt{1 - (\mu_j/2)^2}, \quad j = 1, \dots, N.$$

В окрестности точки λ_0 рассмотрим уравнение Липпмана — Швингера

$$\psi(n, m, \lambda) = \psi_0(n, m, \lambda) - \varepsilon \sum_{(n', m') \in \Gamma} G_0(n - n', m, m', \lambda) \times V(n', m') \psi(n', m', \lambda),$$
(8)

где «налетающая волна» (записанная для переменной k_{j_0}) имеет вид

$$\psi_0(n, m, \lambda) = a \sin\left(\frac{\pi j_0 m}{N+1}\right) e^{ink_{j_0}} \tag{9}$$

и удовлетворяет уравнению $H_0\psi_0 = \lambda\psi_0$.

Положим

$$A_j^{\pm}(\lambda) = -\frac{\varepsilon a}{2i\sin k_j} \sum_{(n',m')\in\Gamma} \sin\left(\frac{\pi j m'}{N+1}\right) e^{\mp ik_j n'} V(n',m') \psi(n',m',\lambda).$$
(10)

Будем предполагать, что

$$\lambda \neq \cos \frac{\pi j}{N+1} + \cos \frac{\pi j'}{N+1}, \quad j, j' = 1, \dots, N.$$
 (11)

В следующей теореме описано рассеяние вблизи особенностей невозмущенной функции Грина для малых потенциалов.

Теорема 10. Пусть выполнено (11). Тогда для вероятностей прохождения P_+ и отражения $P_-=1-P_+$ в точке λ_0 справедливы формулы

$$P_{+} = \sum_{j:\lambda_{0}-2\cos\frac{\pi j}{N+1}\in(-2,2)} \left|\delta_{jj_{0}} + A_{j}^{+}(\lambda_{0})\right|^{2} \sqrt{\frac{4 - \left(\lambda_{0} - 2\cos\frac{\pi j}{N+1}\right)^{2}}{4 - \left(\lambda_{0} - 2\cos\frac{\pi j_{0}}{N+1}\right)^{2}}},$$

$$P_{-} = \sum_{j:\lambda_{0}-2\cos\frac{\pi j}{N+1}\in(-2,2)} \left|A_{j}^{-}(\lambda_{0})\right|^{2} \sqrt{\frac{4-\left(\lambda_{0}-2\cos\frac{\pi j}{N+1}\right)^{2}}{4-\left(\lambda_{0}-2\cos\frac{\pi j_{0}}{N+1}\right)^{2}}}, \quad (12)$$

 $rde\ A_i^{\pm}(\lambda)\ onpedensiom cs$ равенством (10).

Лемма 2. Предположим, что для j_0 из (9) и всех достаточно малых ε справедливо равенство $k_{j_0} = A\varepsilon$ в случае знака «+» или $\widetilde{k}_{j_0} = A\varepsilon$ в случае знака «-», где $\widetilde{k}_{j_0} = -\pi - k_{j_0}$, $A \neq 0$ – вещественная константа. Тогда для решения ψ уравнения Липпмана-Швингера (8) имеет место равенство

$$\psi(n, m, \lambda) = \left(1 - \frac{(\pm 1)^n a^2 v_{j_0}^{\pm}}{2iA + a^2 v_{j_0}^{\pm}}\right) a \sin\left(\frac{\pi j_0 m}{N + 1}\right) + O(\varepsilon),$$

где

$$v_{j_0}^{\pm} = \sum_{(n,m)\in\Gamma} (\pm 1)^n V(n,m) \sin^2\left(\frac{\pi j_0 m}{N+1}\right).$$

Это означает, что для малых потенциалов рассматриваются «скользящие» налетающие электроны, имеющие малые угла падения.

Теорема 11. В условиях леммы 2 справедливо равенство

$$P_{-} = \frac{a^4 \left(v_{j_0}^{\pm}\right)^2}{4A^2 + a^4 \left(v_{j_0}^{+}\right)^2} + O(\varepsilon) = \frac{a^4 (\varepsilon v_{j_0}^{\pm})^2}{4k_{j_0}^2 + a^4 (\varepsilon v_{j_0}^{+})^2} + O(\varepsilon).$$

В третьей главе изучается рассеяние для уравнения Шредингера на трехмерной решетке с возмущенным периодическим потенциалом, отвечающим бесконечному кристаллу с внедренным плоским слоем. В частности, для малых потенциалов слоя и, одновременно, малых перпендикулярных по отношению к слою компонент скорости налетающей «блоховской» частицы, получены формулы прохождения (отражения), имеющие в своем составе скорость частицы и интеграл по ячейке от

произведения квадрата модуля блоховской волновой функции и потенциала слоя.

Рассмотрим оператор Шредингера вида

$$\mathbb{H} = \mathbb{H}_0 + \mathbb{V}(n) + \varepsilon \mathbb{W}(n), \quad n = (n_1, n_2, n_3) \in \mathbb{Z}^3$$

действующий в $l^2(\mathbb{Z}^3)$. Здесь \mathbb{H}_0 действует по формуле

$$(\mathbb{H}_0\psi)(n) = \psi(n_1+1, n_2, n_3) + \psi(n_1-1, n_2, n_3) + \psi(n_1, n_2+1, n_3) + \psi(n_1, n_2-1, n_3) + \psi(n_1, n_2, n_3+1) + \psi(n_1, n_2, n_3-1),$$

 $\mathbb{V}(n)$ — вещественный периодический потенциал по всем переменным $n_j,\ j=1,2,3$ с периодом $T\geqslant 1,\ \mathbb{W}(n)$ — вещественный периодический по переменным n_1,n_2 с периодом T ненулевой потенциал, удовлетворяющий оценке

$$|\mathbb{W}(n)| \leqslant Ce^{-\alpha|n_3|}, \quad \alpha > 0, \tag{13}$$

 $\varepsilon > 0$ — (малый) параметр. Оператор \mathbb{H} представляет собой гамильтониан электрона в конечно-разностном приближении в периодической слоистой структуре.

Через $l^2(A)\otimes L^2(B)$, где $A\subset \mathbb{Z}^n$, B — измеримое множество в \mathbb{R}^m , будем обозначать гильбертово пространство измеримых по x функций $\varphi(n,x)$, где $(n,x)\in A\times B$, таких, что

$$\sum_{n \in A} \int_{B} |\varphi(n, x)|^{2} dx < \infty$$

с обычным скалярным произведением.

Для исследования оператора $\mathbb H$ потребуется унитарный оператор

$$U: l^2(\mathbb{Z}^3) \to l^2(\Omega_0) \otimes L^2(\Omega_0^*) \stackrel{def}{=} \int_{\Omega_0^*}^{\infty} l^2(\Omega_0) dk,$$

$$\begin{split} \varphi \in l^2(\mathbb{Z}^3) &\mapsto (U\varphi)(n,k) = \widehat{\varphi}(n,k) = \\ &= \Big(\frac{T}{2\pi}\Big)^{3/2} \sum_{\nu \in \mathbb{Z}^3} e^{-iT(\nu,k)} \varphi(n+T\nu) \big|_{\Omega_0 \times \Omega_0^*}, \end{split}$$

где $\Omega_0 = \{0, 1, \dots, T-1\}^3$ и $\Omega_0^* = [0, 2\pi/T)^3$ — ячейки в прямой и обратной решетках соответственно. Положим $\mathbb{H}_{\mathbb{V}} = \mathbb{H}_0 + \mathbb{V}(n)$. Оператор $U\mathbb{H}_{\mathbb{V}}U^{-1}$ задается семейством операторов $\mathbb{H}_{\mathbb{V}}(k) = \mathbb{H}_0(k) + \mathbb{V}$, действующих в $l^2(\Omega_0)$, где $k = (k_1, k_2, k_3) \in \Omega_0^*$ — квазиимпульс, а оператор $\mathbb{H}_0(k)$ имеет тот же вид, что и оператор \mathbb{H}_0 , но с использованием свойства блоховости

$$\widehat{\varphi}(n+Tn_0,k) = e^{iT(n_0,k)}\widehat{\varphi}(n,k)$$

в случае $n_j\pm 1\not\in\{0,\dots,T-1\},\,j=1,2,3.$ При этом говорят, что оператор $\mathbb{H}_{\mathbb{V}}$ разложен в прямом интеграле пространств $\int_{\Omega_{5}^{*}}^{\otimes}l^2(\Omega_0)dk.$

Для исследования оператора $\mathbb H$ потребуется также унитарный оператор

$$U_{\parallel}: l^2(\mathbb{Z}^3) \to l^2(\Omega) \otimes L^2(\Omega^*) \stackrel{def}{=} \int_{\Omega^*}^{\otimes} l^2(\Omega) dk_{\parallel},$$
 (14)

$$\begin{split} \varphi \in l^2(\mathbb{Z}^3) \mapsto (U_{\parallel} \varphi)(n,k_{\parallel}) &= \tilde{\varphi}(n,k_{\parallel}) = \\ &= \frac{T}{2\pi} \sum_{\mu \in \mathbb{Z}^2} e^{-iT(\mu,k_{\parallel})} \varphi(n+T(\mu,0)) \big|_{\Omega \times \Omega^*}, \end{split}$$

где $\Omega=\{0,1,\ldots,T-1\}^2\times\mathbb{Z},\ \Omega^*=[0,2\pi/T)^2,\ k_\parallel=(k_1,k_2).$ Свойство блоховости здесь имеет вид

$$\tilde{\varphi}(n+T(n_{0\parallel},0),k_{\parallel})=e^{iT(n_{0\parallel},k_{\parallel})}\tilde{\varphi}(n,k_{\parallel}).$$

Оба оператора $\mathbb{H}_{\mathbb{V}}$ и \mathbb{H} могут быть разложены в прямом интеграле пространств $\int_{\Omega^*}^{\otimes} l^2(\Omega) dk_{\parallel}$ в семейства операторов $\mathbb{H}_{\mathbb{V}}(k_{\parallel})$ и $\mathbb{H}(k_{\parallel})$.

Пусть $\lambda_0 = \lambda_{m_0}(k_0)$, где $k_0 = (k_{10}, k_{20}, k_{30})$ — невырожденное собственное значение оператора $\mathbb{H}_{\mathbb{V}}(k_0)$, отвечающее нормированному

собственному вектору $\psi_{m_0}(n,k_0)$. В дальнейшем предполагается, что

$$\partial \lambda_{m_0}(k_0)/\partial k_3 = 0, \quad \partial^2 \lambda_{m_0}(k_0)/\partial k_3^2 \neq 0.$$

Уравнение $\partial \lambda_{m_0}(k)/\partial k_3=0$ задает в окрестности точки k_0 поверхность, описываемую аналитической функцией $k_3^{(0)}=k_3^{(0)}(k_\parallel)$, где k_\parallel принадлежит некоторой окрестности точки $k_{0\parallel}=(k_{10},k_{20})$.

Уравнение $\lambda_{m_0}(k)=\lambda$, рассматриваемое относительно k_3 , имеет для k_\parallel из окрестности точки $k_{0\parallel}$ ровно два решения $k_{3j}=k_{3j}(k_\parallel,\lambda),\,j=1,2$, аналитически зависящие от k_\parallel,λ там, где $k_{31}\neq k_{32}$ и сливающиеся, если $k=k_0$. Положим $\xi_j=k_{3j}-k_3^{(0)}(k_\parallel),\,j=1,2$.

Рассмотрим уравнение Липпмана–Швингера в $l^2(\mathbb{Z}^3)$, отвечающее оператору \mathbb{H} , имеющее вид

$$\psi(n) = \psi_{m_0}(n, k) - \varepsilon \sum_{n' \in \mathbb{Z}^3} \mathbb{G}_{\mathbb{V}}(n, n', \lambda + i0) \mathbb{W}(n') \psi(n'), \tag{15}$$

где $\mathbb{G}_{\mathbb{V}}(n,n',\lambda)$ — функция Грина оператора $\mathbb{H}_{\mathbb{V}}$ в $l^2(\mathbb{Z}^3)$, $\lambda=\lambda_{m_0}(k)$ принадлежит внутренности одной из зон (промежутков, образующих спектр оператора \mathbb{H}), причем выбираем $k_3=k_{31}$ (см. выше). Положим

$$\delta_{per}(k_{\parallel}) \stackrel{def}{=} \sum_{\mu \in \mathbb{Z}^2} \delta(k_{\parallel} + \frac{2\pi}{T}\mu).$$

Применим к (15) оператор U_{\parallel} , тогда получим уравнение Липпмана—Швингера в ячейке Ω :

$$\tilde{\psi}(n, \tilde{k}_{\parallel}) = \frac{2\pi}{T} \psi_{m_0}(n, k) \delta_{per}(k_{\parallel} - \tilde{k}_{\parallel}) - \varepsilon \sum_{n' \in \Omega} \mathbb{G}_{\mathbb{V}}(n, n', \tilde{k}_{\parallel}, \lambda + i0) \mathbb{W}(n') \tilde{\psi}(n', \tilde{k}_{\parallel}), \quad (16)$$

где $\mathbb{G}_{\mathbb{V}}(n,n',k_{\parallel},\lambda)$ — функция Грина оператора $\mathbb{H}_{\mathbb{V}}(k_{\parallel})$.

В дальнейшем будем предполагать, что

$$\xi_1 = A\varepsilon, \quad A = const \neq 0.$$
 (17)

Лемма 3. Предположим, что выполнено (17). Тогда для \tilde{k}_{\parallel} из некоторой окрестности точки $k_{0\parallel}$ и достаточно малых ε существует единственное решение уравнения Липпмана–Швингера в ячейке Ω (16) вида

$$\begin{split} \tilde{\psi}(n,\tilde{k}_{\parallel}) &= \frac{2\pi}{T} \psi_{m_0}(n,(k_{\parallel},k_3^{(0)})) \times \\ \times &\left[\frac{iA\partial^2 \lambda_{m_0}(k_{\parallel},k_3^{(0)})/\partial k_3^2}{iA\partial^2 \lambda_{m_0}(k_{\parallel},k_3^{(0)})/\partial k_3^2 - \mathbb{W}_0} + O(\varepsilon) \right] \delta_{per}(k_{\parallel} - \tilde{k}_{\parallel}), \end{split}$$

 $e \partial e$

$$\mathbb{W}_0 = T(\psi_{m_0}(n, (k_{\parallel}, k_3^{(0)})), \mathbb{W}(n)\psi_{m_0}(n, (k_{\parallel}, k_3^{(0)}))),$$

а величина $\sqrt{\mathbb{W}(n)}O(\varepsilon)$ аналитически зависит от $k_{\parallel}, \varepsilon$ как $l^2(\Omega)$ значная функция и удовлетворяет оценке

$$\|\sqrt{\mathbb{W}(n)}O(\varepsilon)\| \leqslant C\varepsilon, \quad C = const.$$

Найдена асимптотическая формула для решения исходного уравнения Липпмана–Швингера (15), результат отражен в следующей теореме.

Теорема 12. В условиях леммы 3 имеем равенства

$$\begin{split} &\psi(n) = a_+ \psi_{m_0}(n,(k_\parallel,k_{31})) + \eta_+(n) + O(\varepsilon), \quad n_3 \geqslant 0, \\ &\psi(n) = \psi_{m_0}(n,(k_\parallel,k_{31})) + a_- \psi_{m_0}(n,(k_\parallel,k_{32})) + \eta_-(n) + O(\varepsilon), \quad n_3 < 0, \\ &\varepsilon \partial e \end{split}$$

$$\begin{split} a_{+} = & \frac{iA\partial^{2}\lambda_{m_{0}}\left(k_{\parallel},k_{3}^{(0)}\right)/\partial k_{3}^{2}}{iA\partial^{2}\lambda_{m_{0}}\left(k_{\parallel},k_{3}^{(0)}\right)/\partial k_{3}^{2} - \mathbb{W}_{0}} = \frac{i\partial\lambda_{m_{0}}(k_{\parallel},k_{31})/\partial k_{3}}{i\partial\lambda_{m_{0}}(k_{\parallel},k_{31})/\partial k_{3} - \varepsilon\mathbb{W}_{0}} + O(\varepsilon), \\ a_{-} = & \frac{\mathbb{W}_{0}}{iA\partial^{2}\lambda_{m_{0}}\left(k_{\parallel},k_{3}^{(0)}\right)/\partial k_{3}^{2} - \mathbb{W}_{0}} = \frac{\varepsilon\mathbb{W}_{0}}{i\partial\lambda_{m_{0}}\left(k_{\parallel},k_{31}\right)/\partial k_{3} - \varepsilon\mathbb{W}_{0}} + O(\varepsilon), \end{split}$$

а функции $\eta_{\pm}(n) = \eta_{\pm}(n,k)$ удовлетворяют неравенству (13) и аналитически зависят от k как $l^2(\Omega_{\pm})$ -значные функции, где $\Omega_{+} = \Omega \cap \{n_3 \ge 0\}$, $\Omega_{-} = \Omega \cap \{n_3 < 0\}$.

Описана картина рассеяния вблизи точки экстремума по третьей координате квазиимпульса собственного значения оператора Шредингера с периодическим потенциалом в ячейке, то есть для малой перпендикулярной составляющей угла падения частицы на потенциальный барьер ε W. Получены следующие простые формулы для вероятностей прохождения P_+ и отражения P_- :

$$\begin{split} P_{+} &= |a_{+}|^{2} = \frac{(\partial \lambda_{m_{0}}(k_{\parallel}, k_{31})/\partial k_{3})^{2}}{(\partial \lambda_{m_{0}}(k_{\parallel}, k_{31})/\partial k_{3})^{2} + \varepsilon^{2} \mathbb{W}_{0}^{2}} + O(\varepsilon), \\ P_{-} &= |a_{-}|^{2} = \frac{\varepsilon^{2} \mathbb{W}_{0}^{2}}{(\partial \lambda_{m_{0}}(k_{\parallel}, k_{31})/\partial k_{3})^{2} + \varepsilon^{2} \mathbb{W}_{0}^{2}} + O(\varepsilon). \end{split}$$

Цитируемая литература

- 1. Miroshnichenko A. E. Engineering Fano resonances in discrete arrays / A. E. Miroshnichenko, Y. S. Kivshar // Phys. Rev. E. -2005. -Vol. 72, №5. -056611 (7p).
- 2. Bellissard J. Scattering theory for lattice operators in dimension $d \geqslant 3$ / J. Bellissard, H. Schulz-Baldes, // Rev. Math. Phys. -2012. -Vol. 24. -1250020 (51p).
- 3. Karachalios N. I. The number of bound states for a discrete Schrödinger operator on Z_N , $N \ge 1$, lattices / N. I. Karachalios // J. Phys. A: Math. Theor. -2008. -Vol. 41, N-45. -455201.
- 4. Ziletti A. Coherent transport in multi-branch circuits / A. Ziletti, F. Borgonovi, G. L. Celardo, F. M. Izrailev, L. Karlan, V. G. Zelevinsky // Phys. Rev. B. -2012. -Vol. 85, №5. -052201 (5p).
- 5. Büttiker M. Generalizet many-channel conductance formula with application to small rings / M. Büttiker, Y. Imry, R. Landauer, S. Pinhas // Phys. Rev. B. -1985. -Vol. 31, №10. -P. 6207-6215.
- 6. Ptitsyna N. A lattice model for resonance in open periodic wavequides/ N. Ptitsyna, S. P. Shipman // arXiv: 1101.0170v1 [math-ph]. -2010.

- 7. Чубурин Ю. П. Об одном дискретном операторе Шредингера на графе / Ю. П. Чубурин // Теор. и матем. физика. -2010. -Т. 165, № 1. С. 119-133.
- 8. Арсеньев А. А. Резонансы и туннелирование при рассеянии на квантовой бильярде в приближении сильной связи / А. А. Арсеньев // Теор. и матем. физика. -2004. -Т. 141, № 1. С. 100-112.
- 9. Лакаев С. Н. О спектре двухчастичного оператора Шредингера на решетке / С. Н. Лакаев, А. М. Халхужаев // Теор. и матем. физика. -2008. -Т. 155, N 2. С. 287-300.
- 10. Chung F. Discrete Green's Function / F. Chung, S.-T. Yau // Journal of Combinatorial Theory, Series A. -2000. -Vol.91, №1-2. P. 191-214.
- 11. Rivkind A. Eigenvalue repulsion estimates and some applications for the one-dimensional Anderson model / A. Rivkind, Y. Krivolapov, S. Fishman, A. Soffer // J. Phys. A.: Math. Theor. -2011. -Vol. 44, №. 30. -305206 (19p).
- 12. Альбеверио С. Решаемые модели в квантовой механике / С. Альбеверио, Ф. Гестези, Р. Хёэг-Крон, Х. Хольден. -М.: Мир, 1991. -568 с.

Публикации автора по теме диссертации

- 1. Тинюкова Т. С. Квазиуровни дискретного оператора Шредингера с убывающим потенциалом на графе / Т. С. Тинюкова, Ю. П. Чубурин // Вестник Удмуртского университета. Математика. Механика. Компьютерные Науки. -2009. -Вып. 3. -С. 104–113.
- 2. Тинюкова Т. С. Квазиуровни дискретного оператора Шредингера для квантового волновода / Т. С. Тинюкова // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. -2011. -Вып. 2. -С. 88–97.

- 3. Тинюкова Т. С. Уравнение Липпмана—Швингера для квантовых проволок / Т. С. Тинюкова // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. -2011. -Вып. 1. -С. 99–104.
- 4. Тинюкова Т. С. Рассеяние в случае дискретного оператора Шредингера для пересекающихся квантовых проволок / Т. С. Тинюкова // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. -2012. -Вып. 3. -С. 74–84.
- 5. Тинюкова Т. С. Дискретное уравнение Шредингера для квантового волновода / Т. С. Тинюкова // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. -2012. -Вып. 4. -С. 80–93.
- 6. Тинюкова Т. С. Рассеяние электрона на кристаллической пленке / Т. С. Тинюкова, Ю. П. Чубурин // Теор. и матем. физика. -2013. -Т. 176. -№. 3. -С. 444–457.
- 7. Ашихмина Т. С. О свойствах одного конечно-разностного уравнения на графе / Т. С. Ашихмина // Современные методы теории краевых задач: материалы ВВМШ «Понтрягинские чтения XX». -Воронеж, 2009. С. 202.
- 8. Тинюкова Т. С. Уравнение Липпмана—Швингера для квантовых проволок / Т. С. Тинюкова // Современные методы теории краевых задач: материалы ВВМШ «Понтрягинские чтения XXI». -Воронеж, 2010. -С. 280.
- 9. Тинюкова Т. С. Дискретное уравнение Шредингера для квантового волновода / Т. С. Тинюкова, Ю. П. Чубурин, // Современные методы теории краевых задач: материалы ВВМШ «Понтрягинские чтения XXIII». -Воронеж. -2012. -С. 212.